EPFL- Spring 2025 Differential Geometry HT: G. Moschidis
SOLUTIONS: Series 7 Riemannian Geometry 4 Apr. 2025

7.1 Let (M, g) be a Riemannian manifold and p € M. Let (z!,...,2") be normal coordinates
centered at p. Show that the components of the metric g satisfy at p = (0,...,0) the following
cyclic identity for any 4,5, k,l € {1,...,n}:

0i0ignlp + 0;0kgaly + Okdigslp, = 0.

(Hint: recall that the Gauss lemma is equivalent to the statement that, in normal coordinates,
gijx? = 627, Differentiate this relation a few times and evaluate at (0,...,0).)

Manipulating the above formula, show that

aiajgkl’p = 6kalgij‘P'

Solution. Let (z!,...,2") be normal coordinates centered at p. As we have seen in class, the Gauss
lemma implies that, in these coordinates, we have at every point in the coordinate chart

J — J
gij ¥’ = by

(this is merely a reformulation of the statement that, for any v € Q, C T,, M and w € T,T,Q, we
have g, (v,w) = g (dexp,|,(v),dexp, |,(w)); note that, in normal coordinates around p associated
to the choice of an orthonormal frame {e;}?_, at T, M, so that 0;|, = e;, the coordinate expression of
the exponential map exp,, : {2, C T, M — M is the identity map, and the radial vector v € T,/ T},(2,
is mapped to the vector z'0;).

Differentiating the above relation three times (and noting that d,; is constant in x), we obtain:

Oqxb=580

04010 (9:577) = Ok (6:527) "= 04010mgij - ¥ + Ok01Gi;6%, + OkOmGii0} + 0ngi;o], = 0.

Evaluating the above at p = (0,...,0) (where the first term vanishes) and using the fact that 0,0,gcq
is symmetric in (a,b) and in (¢, d) we obtain for all 4, k,[,m € {1,...,n}

0k019milp + 010mGkilp + OmOkgulp = 0.
Applying the above formula successively, we have for any a,b,c,d € {1,...,n}:

0aO0vYedlp = —0c0aGbdlp — O60cGadlp
= 0a0cGbalp + 0a0agvc|p + 0aObYaclp + 0c0aGaplp
= 20:049ab|p + 0a0aGbc|p + 0aObGaclp
= 20:049ab|p — 0aObGdclp

from which we infer after moving the last term on the right hand side to the left hand side:
28a8bgcd|p = 2acadgab|pa

which is the required identity.
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7.2 In this exercise, we will compute the expression in polar coordinates of the three model geome-
tries in 2 dimensions (this was originally part of the last exercise last week).

(a) As a warm up, express in polar coordinates centered at the origin the flat metric gg on
R2.

(b) Let (H? gi) be the hyperbolic plane (see Exercise 6.4 for an expression of the metric in
the Poincare disc model, when H? is identified with the interior of the unit disc). Let p
be a point in the hyperbolic plane. Compute the metric in polar coordinates around p.
(Hint: Working in the Poincaré disc model, it suffices to only consider the case when p
is at the origin, since any point p € D? can be mapped to any other point in D? via an
isometry. What are the geodesics in (D?, gp) emanating from the origin?)

(c) How is the round metric (52, gs2) expressed in polar coordinates around a point p € 527

(d) In all of the three Riemannian surfaces (S, g) considered above, compute the volume of
the metric ball of radius r > 0 centered at any point p € (S5, g) (due to the symmetry
of the above spaces, the precise choice of p is irrelevant). Denoting with Bg g [r] the
corresponding ball, show that

VOl(B(g27gSQ)[7"]> < VOI(B([R{QE)[?"]) < VOI(B([szngQ)[T’]).

Solution. (a) As we have seen in class, the usual Cartesian coordinates (z,y) on R? are also normal
coordinates around (0, 0) for gg (since the exponential map exp, : ToR? — R? in these coordinates is
simply the identity). Therefore, the usual polar coordinates (r,0) on R?\ {0}, which are defined by
the relations x = rcos(f) and y = rsin(f) are also the “Riemannian” polar coordinates. Using the
usual transformation formula for the metric gp = da? + dy? under changes of coordinates, we have
seen that

gp = dr? + r2d6>.

(b) As we saw in the exercises last week, the set of isometries of (H?, gy) contains all maps of the
form z — Zjig, ad — be > 0; therefore, for any py, ps € H?, there exists an isometry F : (H?, gy) —
(H?, gn) such that F(p;) = py (ie. (H?, gy) is homogeneous). As a result, the metric gy expressed in
polar coordinates around a point p € H? will have the same form independently of the chosen point
p. For this reason, we can choose to work with the point corresponding to the origin in (D?, gp).

Let us use the notation (x,%) and (7,0) for the standard Cartesian and radial coordinates, re-
spectively, on R? (so that 7 = 22 + y* and tanf = £). In the (z,y) coordinate system, the tangent

0
ox

and ey = a% constitute an ortnormal basis of T,D? with respect to gpl, (since
p p

(9p)ijlp = 0ij). Therefore, we can use the coordinates on 7,D* with respect to (e, es) to construct a
normal coordinate system in a neighborhood of p = (0,0) in (D?, gp) via the map exp,; we will use

the notation (x!,2?) for this coordinate system and (r,#) for the associated polar coordinates (so

vectors e; =

that 7% = (2')% + (%)% and tan§ = Z). Notice that, since e; = a%‘ and ey = % , we have
p p
0 0 0 0
—| =—| and —| =—|. (1)
dztlp  Oxlp 0z2lp  Oylp
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Moreover, in the (7, 0) coordinate system, the curves § = const correspond to geodesic rays emanating
from p. Recall that, as we saw in class, the metric gp in polar coordinates takes the form

go = dr? + (b(r,0))*d6?,
with lim,_, b(r, ) = 0 and lim, o @ = 1. Our aim is to express r, § as functions of the background
coordinates 7,0 on D?> C R? and compute b(r, ). To this end, we want to make use of the fact that
(D?, gp) expressed in the (7,0) coordinate system is rotationally symmetric to infer that § = # and
that 7 and b are functions only of 7 (and not of #). Even though this statement should be intuitively
clear, let us try to set up this argument in detail.

It is easy to verify that the geodesics of (D?, gp) emanating from the origin are straight line
segments in D2. Therefore, the curves {# = const} are the same as the curves {# = const}, i.e. § =
6(7,0) is a function only of §. We will now show that this implies that # = #: The condition (1)
implies that the Jacobian matrix of the transformation matrix (z,y) — (7, y) satisfies

Oyt 0,22 (@y—00) [1 0
ozt 0 z* 0 1|°

Thus, using the fact that 6 = Arctan(i—f) and 6 = Arctan(¥), we infer that

The fact that # = 0(0) then implies that )
0=20.

We will now seek an expression for » = 7(7,0). Recall that the point ¢ in (D?, gp corresponding
to the polar coordinate pair (r,#) is simply

q = exp, (7’ cosfe; + rsin 962).

In particular, for any p > 0, the set {r = p} in D is the images under exp, of the set S = {v =
(vhv?) € T,D*: (vh)?+ (v?)? = p*} (where (v',v?) are the coordinates of v in the orthonormal basis
{e1,e2} = {0:lp,0yl,}). The following observation is crucial: In the (7,0) coordinate system, the
metric gp takes the form

gp = m(d?Q + deQ), (2)
i.e. the coefficients of the metric are independent of 0, hence the rotations ®y : (7,0) — (7,0 + \)
are isometries for gp. Using the fact that isometries map geodesics to geodesics (see Ex. 6.1), and
P, |, maps S, to S,, we infer that, for any p > 0, the set {r = p} is invariant under the rotations
®,, A € R. Since these rotations also leave the circles {7 = const} invariant, we infer that the curves
{r = const} and {7 = const} are the same, i.e. r is a function only of 7. Therefore, since r = r(7)
and @ = 60, in the (r,0) coordinate system the isometries ®, also take the form (r,0) — (1,0 + \); we
deduce that, in the polar (r,#) coordinate system, the coefficients of gp should be independent of 6,
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L.e. that b is a function only of 7. Thus, we have the following expressions for gp in the coordinate
systems (r,0) and (7,60) = (7, 0):
dr

go = dr’ + (6(r)"d8" = (G5)"dr* + (b(r))"0”

and, in view of (2):
_ 4 2 | -2 702
gp = a _f2)2(dr + 7do”).

We therefore infer that

from which we obtain L+ 7
r(7) = log <1—7:> and b(r) = sinh(r).

Thus, in polar coordinates (r, ) around p = (0,0), gp takes the form:
gp = dr® + (sinhr)d6?>.

Notice that (r,0) € (0,+00) x [0,27) covers all of D?\ 0.

(¢) As in the case of the hyperbolic plane, the round sphere (52, gs2 is homogenenous and, there-
fore, the metric expressed in polar coordinates around a point p € S? will have the same form
independently of the choice of p; we can therefore choose p to be the north pole N). Recall that, in
stereographic coordinates from N (which parametrize 5% \ S by point on the plane R?, see Ex. 2.3),
the round metric gg2 takes the form

4

(R

gs2 =

(wih (x,y) = (0,0) corresponding to p and 22 + 3> — +o0o corresponding to N). In particular,
switching to radial coordinates (7,6) on R? we have

gs2 = m (df2 + f2d9_2) . (3)

We immediately notice that geodesics emanating from p correspond, in the above coordinate system,
to straight lines # = const and that the metric gs2 is invariant under rotations (7,0) — (7,6 + ).
Therefore, arguing exactly as in the case of the hyperbolic plance, we infer that the polar coordinate
system (r,6) around p satisfies § = § and r = 7(7) and that b(r,6) is a function of r only, i.e.

gs2 = dr* + (b(r))*d0>.
Comparing the above expression with (3), we deduce that

dr 2 _ 2r
d_’F = 1 +772 and b(?"(T)) = m,
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i.e. that
r(r) = 2arctanT and b(r) = sin(r).
Thus,
gs2 = dr? 4 sin® rdf*
and (r,0) € (0,7) x [0,27) covers 5%\ {N, S}
Remark. Notice the analogy with the corresponding expression for the hyperbolic metric.
(d) Using the fact that, on any Riemannian manifold (M, g), the Riemannian volume of a domain

U C M is given by

Vol () = / dvol,
u

with dVol, = \/det(g)dx'...dz"™ (in local coordinates), we can readily compute using the formulas
for the metrics in polar coordinates computed earlier that, for any p > 0:

p 2 p 2m
dVol,, = / / Vdet(gg) dodr = / / rdfdr = mp?,
(o] o Jo o Jo
p 27 p 2m
dVolye = / Vdet(gyz) dodr = / / sinh(r) dfdr = 2 ( cosh(p) — 1).
o Jo o Jo

Vo Bl = |

(R*,91)

Vol (B 6]) = |

Bz g, o) [F)

Similarly, for any p € (0,7) (note that 7 is the radius of injectivity of (52, gs2)), we have

P 2m P 2
Vol(B(gz’gSQ)[p]) :/B dVolg: :/0 i Vv det(gsz) dOdr :/o /0 sin(r) dfdr = 27 (1 — cos(p))

(527952)[’)]

while, for p > m, we have

B(827932) [p] = B(527932) I:ﬂ-:l = 82

Since, for 0 < r < 7w, we have
2

1 —cos(r) < % < cosh(r) — 1,

we infer that, for any p > 0:

Vol (Bisz,ge2)[]) < Vol (Birz,gp)[p]) < Vol(Be g, [])-

7.3 The Euler—Lagrange equations. Let Q@ C R™ be an open domain and let (¢, z,v) — L(t,z,v) € R
be a smooth function for (¢,x,v) € [a,b] x Q x R™. For any smooth map f : [a,b] — Q, we will
define it’s action with respect to £ by the relation

selfl = [ £t 7(0), D) .
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Let F : (=0,0) X [a,b] = Q be a smooth variation of f, i.e. a smooth function satisfying

F(0.) = ()
Show that
L SelF (s, g = [T (0.DLlE, F(0), 0], (4)

b OF ) d )
+ [ GO0 (00L0 10 £(0) = F(OL( SO, () )
where 0,:L and 0, L denote the corresponding partial derivative of the function
L=L(tz". . . 2™ ")

with respect to the Cartesian coordinates z' and v’ on Q and R™, respectively (Hint: After

applying the % derivative inside the integral defining Sz, perform an integration by parts on

the term 0;0,F(s,t)).
Deduce that if f : [a,b] — Q is a stationary point of S, under all variations that fix the
endpoints t = a,b (i.e. F(s,a) = f(a) and F(s,b) = f(b)), then f satisfies the Fuler-Lagrange

equations:
OuLlt, F(0), £/(1)) — L (D Llt, £(1), /(1)) = 0.

dt
Remark. In classical mechanics, f : [a,b] — € can be thought of as the trajectory of a particle
moving in the domain € for time ¢ € [a,b]. In this case, we can define £ to be the Lagrangian
of the particle; in the case when the particle moves under the influence of a conservative force
(i.e. one which can be written as minus the gradient of a potnetial), the Lagrangian takes the
form of the difference between the kinetic and potential energy of the particle:

L(t,z,v) = %va —Ulx).

The functional S, is called the action of the trajectory f. An equivalent way of formulating
Newtonian mechanics is by assuming the principle of least action: The particle moves along a
trajectory for which the action is stationary among all paths between f(a) and f(b). You can
verify that, in the case of a conservative force, the Euler-Lagrange equations are the standard
Newtonian equations of motion for the particle:

md2 fz
dt?

(t) = —0;U o f(1).

Solution. We can directly calculate using the chain rule formula for differentiation:

d d

b
%&W@NZELL@ﬂmmw@mﬁ
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/b §(£<t’ F(s,t),0,F (s,t))) dt

S

/b <8£(t,$,v) aFi( 9
= —_— h——— S
u oxt (z0)=(F(s,),0:F(s,t)) O8
N IL(t, z,v) 82Fi( t)) ”
_— - — 8
vt (20)=(F(s,t),0:F(s,t)) 08Ot
/b <8£(t,x,v) aFi( 9
p— R — - — S
" oxt (z0)=(F(s,),0:F(s,t)) O
OL(t,x,v) d OF
it A A D (st )dt
+ ovt (z,0)=(F(s,£),0.F(s,t)) 8t( Js (s >)
/b OL(t,x,v) 8Fi< 0
= _— * S
" ozt (2,0)=(F(s,),0:F(s,t)) O
Q{@E(t,x,v) OF" (s t)}
ot vt (z0)=(F(s,t),0:F(s,t)) OS5
9, (aﬁ(t,w,v) ) (‘9Fi< 0| at
_—— —_— . S
ot oV’ (z,0)=(F(s,),0:F(s,)) 08
/b OL(t, x,v) 8Fi< "
= B r—— . S
" ozt (2,0)=(F(s,),0:F(s,t)) O8
t Fi
_ 0 (oLt )2 ]
ot ov' (z,0)=(F(s,t),0:F(s))” 08
‘ b
OL(t,x,v) OF" (5,1)
o' (z,0)=(F(s,;t),0:F(st)) 08 _

Setting s = 0 above and using our assumption that F'(0,¢) = f(t), we obtain the desired relation:

b %
~ [ ot rw.50) - LOuL 10, FO)] - G0

b
50] ’
t=a

~0 (6)

s=0

SelF(s, )]

s=0

O] dt  (5)

OF"

+ 0w L(E f(1), /(1)) - = (5,1)

Suppose, now, that f : [a,b] — Q satisfies

d
S SelF(s, )

for all variations F : (—4,0) X [a,b] — Q fixing the endpoints, i.e. satisfying F(s,a) = f(a) and
F(s,b) = f(b) for all s € (=6,0). Let x : [a,b] — [0,400) be a smooth function such that x(a) =
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x(b) =0 and x(t) > 0 for ¢t € (a,b). Let us choose a variation F : (—4,d) x [a,b] — Q of f with the
following properties:

1. F(s,a) = f(a) and F(s,b) = f(b) for all s € (=4, 9),
= (1) (Qus Lt F(0), /(1)) = & (DLt (1), (1)) ).

Note that such a variation exists: Since f is smooth and f([a,b]) is a compact subset of the open set
Q, there exists a p > 0 such that

2. 0,F(s,1)

s=0

dist(f(t),00) > p for all t € [a,].

Therefore, choosing
P
maxicius) |(0) (Ous L0t (1), () = (0L S (1), /(1))

the map F : (—0,9) X [a,b] — R" defined by

0<d<

Y

F(s.0) = £(2) + sx() (9 L0t 70), £10)) — (@000, £(1), 1))

stays inside () and satisfies properties 1 and 2.
Using F' as above in (6) and applying the formula (5) (noting that

aviﬁ(t7 f(t)a f/(t)) -y

since F(s,a) = f(a) and F(s,b) = f(b)), we obtain
’ / d / 2
Since X|(ap) > 0 and 9, L(t, f(1), /(1)) — L (9, L(t, (1), f'(t))) is continuous on [a, b], we deduce that
d
O L(t, f(1), (1)) — E(aviz(t,f(t),f’(t))) =0 forall t€a,b].
*7.4 Geodesics as stationary points of the energy functional. We will now extend the formalism of
the previous exercise to the realm of manifolds. Let (M, ¢g) be a smooth Riemannian manifold.
Let £ : TM — R be a smooth function; for any x € M and v € T, M, we will denote with

L(x,v) the value of £ at (z,v) € TM. For any smooth curve v : [a,b] — M, we will define
the action of v with respect to £ by

b
Seln] = / CI(t). 4() dt.
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(a)

Let v : [a,b] — M be a given curve and ¢ : (—0,9) X [a,b] = M be a smooth variation
of v which is entirely contained in a coordinate chart (z',...,2") on M; we will denote
with 22 |,_ the variation field along 7 (as we did in class). Show that (4) also holds in
this case, i.e.

D 5el0dly = [0 5(0) - 221 o(0)],

b = i
[ (0t60,30) - 5 @uLO0:3(0))) - G ol .

where, in the local coordinates (x!,... 2" vl ... v") on TM associated to (x!,... z")
(recall that v*(V) = dz*(V) for any V € I'(M)), 9,:L and 0,:L denote the partial deriva-
tives of L(zt, ..., 2™ v, ... v™) with respect to the corresponding variables.

Moreover, if « is a stationary point for S, for all variations ¢, with ¢s(a) = v(a) and
¢s(b) = v(b), then

) d ) ‘
Let us now examine the case when

L(x,v) = %g|x(v,v) forz e M,v e T,M

(this can be thought of as an extension of the Newtonian function for the kinetic energy in
the setting of Riemannian manifolds). In this case, the action S, is known as the energy
functional (which we also saw in Ex. 2.1):

Show that if ¢ is a variation of a smooth curve v : [a,b] — M, not necessarily contained
in a single coordinate chart, then

d 00, o[ 00
—& ss::_sza. - —s:,V-' dt.
S0 = (G2l 1, — [ (G0 Vi),
This is known as the 1°¢ variation formula for the energy.(Hint: Break up the variation
into smaller intervals in t such that each one is contained inside a single coordinate chart.)
Deduce that if v is a stationary point for the energy under all variations which fix the
endpoints y(a), v(b), then ~ is a geodesic.

Remark. In contrast to the case of stationary curves for the length functional (which are
reparametrizations of geodesics, not necessarily with constant speed), a reparametrization
of a geodesic is not a stationary point for £[y]. Thus, £[y] can be used to single out
“properly parametrized” geodesics via a minimization process.
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(¢c) For any p € M, let ¢ : [a,b] — Q, C T,M be a smooth curve (€2, is the domain of
definition of the exponential map exp,). Show that

(o)1) = (dexp, i (s), dexp, luiyo(s))

g7

where we view o(s) both as point in €2, and a vector in T}(4)€2, (namely as the tangent
vector of the line t — o(s)t at t = 1). Hint: What is the energy of the geodesic t —
exp,(a(s)t), t € [0,1]? Deduce from the above formula the statement of the lemma of
Gauss.

Solution. (a) The proof of this part is essentially Exercise 7.3.

(b) Let a =ty < t; < ... < tr_1 < tx, = bbe a partition of [a, b] such that, for any [ =0,..., k—1,
the curve {v(t) : t € [t;,t;11]}, lies inside the domain U, of a coordinate chart (z',...,2") on M.
The continuity of ¢4(¢) in (s,t) then implies that, by possibly choosing a smaller value of 6 > 0 if
necessary, we have {¢(t) : t € [t;,t;11]} C U;.

Expressed in the associated coordinate chart (x!,... z™;v! ... v™) on TU, ~ U; x R" (where, for
any p € U, and & € T,M, we have v'(§) = dx'[,(€)), the function £ takes the form

L(z,v) = %gab( Joob.

Note that 0,:L(x,v) = guv® and, therefore,

)
d

0ot L(y(1),7(1)) — (&ﬂﬁ( (1), 7(t))
zgabl’y 7 () (t) — = (aho (1))

1
2
1 » d "

= 30aho 3 (F(0) = (5 Gk 0) + gul03(0)

= 300" (03°(0) — (@snh 7 (OF(0) + gk (1)

= — <gib|7(tﬁb(t) + %(23j9¢b|7(t)7j(t)7b(t) - az'gabh(tﬁa(twb(t))>

. 1 PN i N
= - <gib|v<twb(t) + B <3jgz'b\v(t)73 (A" (t) + Dugijlyy ¥ (£)3(t) — Bigavloy¥ (ﬂW%))) :

Thus, using the fact that
1
gikF;?b =5 (@gw + Opgij — aigjb);
the above calculation yields:

0. LG(1)A(1) — 5 (0uLO),4(1) (1)
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- (!Jm!w(tﬁk(t) + Giklyoy il 77 (t)"yb(t)>

= —githo (Vsw3(®)".

Denoting
ti41

O[] = L(¢s(1), ds(1)) dt

t

we obtain after applying part (a) of this exercise and using (7):

d o

ZEOB)lom0 = |gshin

tiy1

S20,07(t)

s ¢1 j
[T ko G0 (i) d
a¢s . I+1 a¢s
= (%, >g§;l—/tl (S o, V50), . ®

Summing over [ = 0,...,k — 1 and using the fact that £[ps] = Zf;ol EWg,] (noting also the cancel-
lations occuring in the sum for the first terms in the right hand side of (8)), we obtain the desired
identity:

d - 8¢s . 1 — b a¢s .
d—5[¢5]|s:0 = Z <E|s:077>g‘?;l - Z/ <g|s:o, V*ﬂ>g dt

=0

8(]53 . a¢s
:<a sU’Y tto /< 307 'yf}/>dt

06, 90, |
= < a(i |5:07’y>g|t:a_/ <a_(i‘s:0,v»'y")/>g dt. (9)

In the case when v is a stationary point of £[¢s] for all variations ¢, with ¢s(a) = v(a) and
®s(b) = v(b), by choosing a variation ¢4 such that

0 .
24(0,6) = X(O) Vo

(where x : [a,b] — [0,+00) is chosen as in Exercise 7.1, so that x(a) = x(b) = 0 and x(¢) > 0 for
€ (a,b)) we obtain

- ig[gbsns:o =— / X0V, Vi), dt

from which we infer (since (V) > 0 and V54|, is continuous in ¢) that V54 = 0. The construction
of a variation ¢, as above can be done similarly as in Exercise 7.1 (by constructing {¢4(t) : ¢t € [t;,4)}
for each successive [ = 0,...,k — 1 in the coordinate chart U so that the points ¢4(t;) € M coincide
with the value obtained form the construction in the previous coordinate chart U;_1).

(c) Let us consider the family of curves ¢; : [0, 1] — M, s € [a, b], defined by the relation

0u(1) = exp, (o(s)t).
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Note that for any value of s, ¢, is a geodesic of (M, g); moreover, we have
®s(0) =p for all s € [a,b].

Thus, for any sg € (a,b), applying the variation formula (9) for the family of curves ¢, (considering
them as variations of the geodesic ¢, ), we obtain:

d a¢5 . ! a¢s ]
_5[¢s]‘s:so = <¥|s=soy ¢30>g‘i:0 - A <E|s:soa V¢SO¢80>9 dt

Since

== |t=0 = 0 and ¢y, is a geodesic, we deduce

_€[¢s s=s0 — <a¢5 ¢so( )>
= << epr ))’s stepr( (SO)t)|t:1>g~ (10)

Since ¢4(t) is a geodesic, ||¢s(t)|| is constant in ¢ € [0, 1]. Therefore,

5[%]2/ 9(0s(1), 45 (t)) dt = /Ilcbs (8)I* dt = [|:(0) ||2—H ; (expp(0 (o()))] ol "

= o(s) and, thus,

Using the fact that dexp, |,—o = Id, we therefore have < (exp,(o(s )t>>‘t:0

E[os] = lo(s)llg,

Moreover, we calculate (using the general formula £ (Fo~y(s)) = dF|,)%(s) for any curve v : I — N}
and any smooth map F : N} — N5):

d .
T exp,(0(5)))]s=se = dexp, |o(s)5(5)

and p
I exp, (0 (50)t)|i=1 = dexp, |»(s7(50)-

Substituting the above relations in (10), we finally obtain that, for any so:

d 2
%(HU(S)H;AP) —s0

Let v,§ € T, M be tangent vectors so that v L £ Using the above formula for the curves
01(s) = vs and o5(s) = cos(s)v + sin(s)¢ for so = 0, we obtain the statement of the lemma o Gauss,
namely

<depr |a(so)d(30)> dexpp |U(80)0(80)>g'

<depr ’UU’ depr ’vv>g = <1}, U>g7 <depr ’U£7 depr ‘v'U>g = 0.
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