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7.1 Let (M, g) be a Riemannian manifold and p ∈ M. Let (x1, . . . , xn) be normal coordinates
centered at p. Show that the components of the metric g satisfy at p = (0, . . . , 0) the following
cyclic identity for any i, j, k, l ∈ {1, . . . , n}:

∂i∂jgkl|p + ∂j∂kgil|p + ∂k∂igjl|p = 0.

(Hint: recall that the Gauss lemma is equivalent to the statement that, in normal coordinates,
gijx

j = δijx
j. Di�erentiate this relation a few times and evaluate at (0, . . . , 0).)

Manipulating the above formula, show that

∂i∂jgkl|p = ∂k∂lgij|p.

Solution. Let (x1, . . . , xn) be normal coordinates centered at p. As we have seen in class, the Gauss
lemma implies that, in these coordinates, we have at every point in the coordinate chart

gijx
j = δijx

j

(this is merely a reformulation of the statement that, for any v ∈ Ωp ⊂ TmM and w ∈ TvTpΩ, we
have gp (v, w) = g

(
d expp |v(v), d expp |v(w)

)
; note that, in normal coordinates around p associated

to the choice of an orthonormal frame {ei}ni=1 at TpM, so that ∂i|p = ei, the coordinate expression of
the exponential map expp : Ωp ⊂ TpM → M is the identity map, and the radial vector v ∈ TvTpΩp

is mapped to the vector xi∂i).
Di�erentiating the above relation three times (and noting that δij is constant in x), we obtain:

∂k∂l∂m
(
gijx

j
)
= ∂k∂l∂m

(
δijx

j
) ∂axb=δba⇐⇒ ∂k∂l∂mgij · xj + ∂k∂lgijδ

j
m + ∂k∂mgijδ

j
l + ∂l∂mgijδ

j
k = 0.

Evaluating the above at p = (0, . . . , 0) (where the �rst term vanishes) and using the fact that ∂a∂bgcd
is symmetric in (a, b) and in (c, d) we obtain for all i, k, l,m ∈ {1, . . . , n}

∂k∂lgmi|p + ∂l∂mgki|p + ∂m∂kgli|p = 0.

Applying the above formula successively, we have for any a, b, c, d ∈ {1, . . . , n}:

∂a∂bgcd|p = −∂c∂agbd|p − ∂b∂cgad|p
= ∂d∂cgba|p + ∂a∂dgbc|p + ∂d∂bgac|p + ∂c∂dgab|p
= 2∂c∂dgab|p + ∂a∂dgbc|p + ∂d∂bgac|p
= 2∂c∂dgab|p − ∂a∂bgdc|p

from which we infer after moving the last term on the right hand side to the left hand side:

2∂a∂bgcd|p = 2∂c∂dgab|p,

which is the required identity.
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7.2 In this exercise, we will compute the expression in polar coordinates of the three model geome-
tries in 2 dimensions (this was originally part of the last exercise last week).

(a) As a warm up, express in polar coordinates centered at the origin the �at metric gE on
R
2.

(b) Let (H2, gH) be the hyperbolic plane (see Exercise 6.4 for an expression of the metric in
the Poincare disc model, when H2 is identi�ed with the interior of the unit disc). Let p
be a point in the hyperbolic plane. Compute the metric in polar coordinates around p.
(Hint: Working in the Poincaré disc model, it su�ces to only consider the case when p
is at the origin, since any point p ∈ D

2 can be mapped to any other point in D
2 via an

isometry. What are the geodesics in (D2, gD) emanating from the origin?)

(c) How is the round metric (S2, gS2) expressed in polar coordinates around a point p ∈ S
2?

(d) In all of the three Riemannian surfaces (S, g) considered above, compute the volume of
the metric ball of radius r > 0 centered at any point p ∈ (S, g) (due to the symmetry
of the above spaces, the precise choice of p is irrelevant). Denoting with B(S,g)[r] the
corresponding ball, show that

Vol(B(S2,g
S2 )

[r]) < Vol(B(R2,gE)[r]) < Vol(B(H2,g
H2 )[r]).

Solution. (a) As we have seen in class, the usual Cartesian coordinates (x, y) on R2 are also normal
coordinates around (0, 0) for gE (since the exponential map exp0 : T0R

2 → R
2 in these coordinates is

simply the identity). Therefore, the usual polar coordinates (r, θ) on R2 \ {0}, which are de�ned by
the relations x = r cos(θ) and y = r sin(θ) are also the �Riemannian� polar coordinates. Using the
usual transformation formula for the metric gE = dx2 + dy2 under changes of coordinates, we have
seen that

gE = dr2 + r2dθ2.

(b) As we saw in the exercises last week, the set of isometries of (H2, gH) contains all maps of the
form z → az+b

cz+d
, ad − bc > 0; therefore, for any p1, p2 ∈ H

2, there exists an isometry F : (H2, gH) →
(H2, gH) such that F (p1) = p2 (i.e. (H

2, gH) is homogeneous). As a result, the metric gH expressed in
polar coordinates around a point p ∈ H

2 will have the same form independently of the chosen point
p. For this reason, we can choose to work with the point corresponding to the origin in (D2, gD).

Let us use the notation (x, y) and (r̄, θ̄) for the standard Cartesian and radial coordinates, re-
spectively, on R2 (so that r̄2 = x2 + y2 and tan θ̄ = y

x
). In the (x, y) coordinate system, the tangent

vectors e1 = ∂
∂x

∣∣∣
p
and e2 = ∂

∂y

∣∣∣
p
constitute an ortnormal basis of TpD

2 with respect to gD|p (since

(gD)ij|p = δij). Therefore, we can use the coordinates on TpD
2 with respect to (e1, e2) to construct a

normal coordinate system in a neighborhood of p = (0, 0) in (D2, gD) via the map expp; we will use
the notation (x1, x2) for this coordinate system and (r, θ) for the associated polar coordinates (so

that r2 = (x1)2 + (x2)2 and tan θ̄ = x2

x1 ). Notice that, since e1 =
∂
∂x

∣∣∣
p
and e2 =

∂
∂y

∣∣∣
p
, we have

∂

∂x1

∣∣∣
p
=

∂

∂x

∣∣∣
p

and
∂

∂x2

∣∣∣
p
=

∂

∂y

∣∣∣
p
. (1)
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Moreover, in the (r, θ) coordinate system, the curves θ = const correspond to geodesic rays emanating
from p. Recall that, as we saw in class, the metric gD in polar coordinates takes the form

gD = dr2 +
(
b(r, θ)

)2
dθ2,

with limr→0 b(r, θ) = 0 and limr→0
b(r,θ)

r
= 1. Our aim is to express r, θ as functions of the background

coordinates r̄, θ̄ on D2 ⊂ R
2 and compute b(r, θ). To this end, we want to make use of the fact that

(D2, gD) expressed in the (r̄, θ̄) coordinate system is rotationally symmetric to infer that θ = θ̄ and
that r̄ and b are functions only of r̄ (and not of θ). Even though this statement should be intuitively
clear, let us try to set up this argument in detail.

It is easy to verify that the geodesics of (D2, gD) emanating from the origin are straight line
segments in D2. Therefore, the curves {θ = const} are the same as the curves {θ̄ = const}, i.e. θ =
θ(r̄, θ̄) is a function only of θ̄. We will now show that this implies that θ = θ̄: The condition (1)
implies that the Jacobian matrix of the transformation matrix (x, y) → (x̄, ȳ) satis�es[

∂xx
1 ∂xx

2

∂yx
1 ∂yx

2

]
(x,y)→(0,0)−−−−−−→

[
1 0
0 1

]
.

Thus, using the fact that θ = Arctan(x
2

x1 ) and θ̄ = Arctan( y
x
), we infer that

lim
r̄→0

θ

θ̄
= 1.

The fact that θ = θ(θ̄) then implies that
θ = θ̄.

We will now seek an expression for r = r(r̄, θ̄). Recall that the point q in (D2, gD corresponding
to the polar coordinate pair (r, θ) is simply

q = expp

(
r cos θe1 + r sin θe2

)
.

In particular, for any ρ > 0, the set {r = ρ} in D is the images under expp of the set S
(p)
ρ = {v =

(v1, v2) ∈ TpD
2 : (v1)2+(v2)2 = ρ2} (where (v1, v2) are the coordinates of v in the orthonormal basis

{e1, e2} = {∂x|p, ∂y|p}). The following observation is crucial: In the (r̄, θ̄) coordinate system, the
metric gD takes the form

gD =
4

(1− r̄2)2
(
dr̄2 + r̄2dθ̄

)
, (2)

i.e. the coe�cients of the metric are independent of θ̄, hence the rotations Φλ : (r̄, θ̄) → (r̄, θ̄ + λ)
are isometries for gD. Using the fact that isometries map geodesics to geodesics (see Ex. 6.1), and
Φ∗|p maps Sρ to Sρ, we infer that, for any ρ > 0, the set {r = ρ} is invariant under the rotations
Φλ, λ ∈ R. Since these rotations also leave the circles {r̄ = const} invariant, we infer that the curves
{r = const} and {r̄ = const} are the same, i.e. r is a function only of r̄. Therefore, since r = r(r̄)
and θ = θ̄, in the (r, θ) coordinate system the isometries Φλ also take the form (r, θ) → (r, θ+λ); we
deduce that, in the polar (r, θ) coordinate system, the coe�cients of gD should be independent of θ,
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i.e. that b is a function only of r. Thus, we have the following expressions for gD in the coordinate
systems (r, θ) and (r̄, θ̄) = (r̄, θ):

gD = dr2 + (b(r))2dθ2 =
(dr
dr̄

)2
dr̄2 + (b(r))2dθ2

and, in view of (2):

gD =
4

(1− r̄2)2
(dr̄2 + r̄2dθ2).

We therefore infer that
dr

dr̄
=

2

1− r̄2
and b

(
r(r̄)

)
=

2r̄

1− r̄2

from which we obtain

r(r̄) = log
(1 + r̄

1− r̄

)
and b(r) = sinh(r).

Thus, in polar coordinates (r, θ) around p = (0, 0), gD takes the form:

gD = dr2 + (sinh r)2dθ2.

Notice that (r, θ) ∈ (0,+∞)× [0, 2π) covers all of D2 \ 0.
(c) As in the case of the hyperbolic plane, the round sphere (S2, gS2 is homogenenous and, there-

fore, the metric expressed in polar coordinates around a point p ∈ S
2 will have the same form

independently of the choice of p; we can therefore choose p to be the north pole N). Recall that, in
stereographic coordinates from N (which parametrize S2 \ S by point on the plane R2, see Ex. 2.3),
the round metric gS2 takes the form

gS2 =
4

(1 + x2 + y2)2
(
dx2 + dy2

)
(wih (x, y) = (0, 0) corresponding to p and x2 + y2 → +∞ corresponding to N). In particular,
switching to radial coordinates (r̄, θ̄) on R2, we have

gS2 =
4

(1 + r̄2)2
(
dr̄2 + r̄2dθ̄2

)
. (3)

We immediately notice that geodesics emanating from p correspond, in the above coordinate system,
to straight lines θ̄ = const and that the metric gS2 is invariant under rotations (r̄, θ̄) → (r̄, θ̄ + λ).
Therefore, arguing exactly as in the case of the hyperbolic plance, we infer that the polar coordinate
system (r, θ) around p satis�es θ = θ̄ and r = r(r̄) and that b(r, θ) is a function of r only, i.e.

gS2 = dr2 + (b(r))2dθ2.

Comparing the above expression with (3), we deduce that

dr

dr̄
=

2

1 + r̄2
and b(r(r̄)) =

2r̄

1 + r̄2
,
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i.e. that
r(r̄) = 2 arctan r̄ and b(r) = sin(r).

Thus,
gS2 = dr2 + sin2 rdθ2

and (r, θ) ∈ (0, π)× [0, 2π) covers S2 \ {N,S}
Remark. Notice the analogy with the corresponding expression for the hyperbolic metric.

(d) Using the fact that, on any Riemannian manifold (M, g), the Riemannian volume of a domain
U ⊂ M is given by

Vol
(
U
)
=

�
U
dVolg

with dVolg =
√

det(g)dx1 . . . dxn (in local coordinates), we can readily compute using the formulas
for the metrics in polar coordinates computed earlier that, for any ρ > 0:

Vol
(
B(R2,gE)[ρ]

)
=

�
B(R2,gE)[ρ]

dVolgE =

� ρ

0

� 2π

0

√
det(gE) dθdr =

� ρ

0

� 2π

0

r dθdr = πρ2,

Vol
(
B(H2,g

H2 )[ρ]
)
=

�
B(H2,g

H2 )[ρ]

dVolH2 =

� ρ

0

� 2π

0

√
det(gH2) dθdr =

� ρ

0

� 2π

0

sinh(r) dθdr = 2π
(
cosh(ρ)− 1

)
.

Similarly, for any ρ ∈ (0, π) (note that π is the radius of injectivity of (S2, gS2)), we have

Vol
(
B(S2,g

S2 )
[ρ]
)
=

�
B(S2,g

S2
)[ρ]

dVolS2 =

� ρ

0

� 2π

0

√
det(gS2) dθdr =

� ρ

0

� 2π

0

sin(r) dθdr = 2π
(
1− cos(ρ)

)
while, for ρ ⩾ π, we have

B(S2,g
S2 )

[ρ] = B(S2,g
S2 )

[π] = S
2.

Since, for 0 < r ⩽ π, we have

1− cos(r) <
r2

2
< cosh(r)− 1,

we infer that, for any ρ > 0:

Vol
(
B(S2,g

S2 )
[ρ]
)
< Vol

(
B(R2,gE)[ρ]

)
< Vol

(
B(H2,g

H2 )[ρ]
)
.

7.3 The Euler�Lagrange equations. Let Ω ⊂ R
n be an open domain and let (t, x, v) → L(t, x, v) ∈ R

be a smooth function for (t, x, v) ∈ [a, b]×Ω× R
n. For any smooth map f : [a, b] → Ω, we will

de�ne it's action with respect to L by the relation

SL[f ]
.
=

� b

a

L(t, f(t), df
dt
(t)) dt.
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Let F : (−δ, δ)× [a, b] → Ω be a smooth variation of f , i.e. a smooth function satisfying

F (0, ·) = f(·).

Show that

d

ds
SL[F (s, ·)]

∣∣
s=0

=
[∂F i

∂s
(0, t)·∂viL(t, f(t), f ′(t))

]b
t=a

(4)

+

� b

a

∂F i

∂s
(0, t)

(
∂xiL(t, f(t), f ′(t))− d

dt

(
∂viL(t, f(t), f ′(t))

))
dt,

where ∂xiL and ∂viL denote the corresponding partial derivative of the function

L = L(t;x1, . . . , xn; v1, . . . , vn)

with respect to the Cartesian coordinates xi and vi on Ω and R
n, respectively (Hint: After

applying the ∂
∂s

derivative inside the integral de�ning SL, perform an integration by parts on
the term ∂s∂tF (s, t)).

Deduce that if f : [a, b] → Ω is a stationary point of SL under all variations that �x the
endpoints t = a, b (i.e. F (s, a) = f(a) and F (s, b) = f(b)), then f satis�es the Euler�Lagrange
equations :

∂xiL(t, f(t), f ′(t))− d

dt

(
∂viL(t, f(t), f ′(t))

)
= 0.

Remark. In classical mechanics, f : [a, b] → Ω can be thought of as the trajectory of a particle
moving in the domain Ω for time t ∈ [a, b]. In this case, we can de�ne L to be the Lagrangian
of the particle; in the case when the particle moves under the in�uence of a conservative force
(i.e. one which can be written as minus the gradient of a potnetial), the Lagrangian takes the
form of the di�erence between the kinetic and potential energy of the particle:

L(t, x, v) = 1

2
mv2 − U(x).

The functional SL is called the action of the trajectory f . An equivalent way of formulating
Newtonian mechanics is by assuming the principle of least action: The particle moves along a
trajectory for which the action is stationary among all paths between f(a) and f(b). You can
verify that, in the case of a conservative force, the Euler�Lagrange equations are the standard
Newtonian equations of motion for the particle:

m
d2f i

dt2
(t) = −∂iU ◦ f(t).

Solution. We can directly calculate using the chain rule formula for di�erentiation:

d

ds
SL[F (s, ·)] = d

ds

� b

a

L(t, F (s, t), ∂tF (s, t)) dt
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=

� b

a

∂

∂s

(
L(t, F (s, t), ∂tF (s, t))

)
dt

=

� b

a

(∂L(t, x, v)
∂xi

∣∣∣
(x,v)=(F (s,t),∂tF (s,t))

· ∂F
i

∂s
(s, t)

+
∂L(t, x, v)

∂vi

∣∣∣
(x,v)=(F (s,t),∂tF (s,t))

· ∂
2F i

∂s∂t
(s, t)

)
dt

=

� b

a

(∂L(t, x, v)
∂xi

∣∣∣
(x,v)=(F (s,t),∂tF (s,t))

· ∂F
i

∂s
(s, t)

+
∂L(t, x, v)

∂vi

∣∣∣
(x,v)=(F (s,t),∂tF (s,t))

· ∂

∂t

(∂F i

∂s
(s, t)

))
dt

=

� b

a

[
∂L(t, x, v)

∂xi

∣∣∣
(x,v)=(F (s,t),∂tF (s,t))

· ∂F
i

∂s
(s, t)

+
∂

∂t

{∂L(t, x, v)
∂vi

∣∣∣
(x,v)=(F (s,t),∂tF (s,t))

· ∂F
i

∂s
(s, t)

}
− ∂

∂t

(∂L(t, x, v)
∂vi

∣∣∣
(x,v)=(F (s,t),∂tF (s,t))

)
· ∂F

i

∂s
(s, t)

]
dt

=

� b

a

[
∂L(t, x, v)

∂xi

∣∣∣
(x,v)=(F (s,t),∂tF (s,t))

· ∂F
i

∂s
(s, t)

− ∂

∂t

(∂L(t, x, v)
∂vi

∣∣∣
(x,v)=(F (s,t),∂tF (s,t))

)
· ∂F

i

∂s
(s, t)

]
dt

+

[
∂L(t, x, v)

∂vi

∣∣∣
(x,v)=(F (s,t),∂tF (s,t))

· ∂F
i

∂s
(s, t)

]b
t=a

.

Setting s = 0 above and using our assumption that F (0, t) = f(t), we obtain the desired relation:

d

ds
SL[F (s, ·)]

∣∣∣
s=0

=

� b

a

[
∂xiL(t, f(t), f ′(t))− d

dt

(
∂viL(t, f(t), f ′(t))

)]
· ∂F

i

∂s
(s, t)

∣∣∣
s=0

]
dt (5)

+

[
∂viL(t, f(t), f ′(t)) · ∂F

i

∂s
(s, t)

∣∣∣
s=0

]b
t=a

.

Suppose, now, that f : [a, b] → Ω satis�es

d

ds
SL[F (s, ·)]

∣∣∣
s=0

= 0 (6)

for all variations F : (−δ, δ) × [a, b] → Ω �xing the endpoints, i.e. satisfying F (s, a) = f(a) and
F (s, b) = f(b) for all s ∈ (−δ, δ). Let χ : [a, b] → [0,+∞) be a smooth function such that χ(a) =
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χ(b) = 0 and χ(t) > 0 for t ∈ (a, b). Let us choose a variation F : (−δ, δ)× [a, b] → Ω of f with the
following properties:

1. F (s, a) = f(a) and F (s, b) = f(b) for all s ∈ (−δ, δ),

2. ∂sF (s, t)
∣∣∣
s=0

= χ(t)
(
∂xiL(t, f(t), f ′(t))− d

dt

(
∂viL(t, f(t), f ′(t))

))
.

Note that such a variation exists: Since f is smooth and f([a, b]) is a compact subset of the open set
Ω, there exists a ρ > 0 such that

dist(f(t), ∂Ω) > ρ for all t ∈ [a, b].

Therefore, choosing

0 < δ <
ρ

maxt∈[a,b]

[
χ(t)

(
∂xiL(t, f(t), f ′(t))− d

dt

(
∂viL(t, f(t), f ′(t))

)] ,
the map F : (−δ, δ)× [a, b] → R

n de�ned by

F (s, t) = f(t) + sχ(t)
(
∂xiL(t, f(t), f ′(t))− d

dt

(
∂viL(t, f(t), f ′(t))

))
stays inside Ω and satis�es properties 1 and 2.

Using F as above in (6) and applying the formula (5) (noting that[
∂viL(t, f(t), f ′(t)) · ∂F

i

∂s
(s, t)

∣∣∣
s=0

]b
t=a

= 0

since F (s, a) = f(a) and F (s, b) = f(b)), we obtain

� b

a

χ(t)
[
∂xiL(t, f(t), f ′(t))− d

dt

(
∂viL(t, f(t), f ′(t))

)]2
dt = 0.

Since χ|(a,b) > 0 and ∂xiL(t, f(t), f ′(t))− d
dt

(
∂viL(t, f(t), f ′(t))

)
is continuous on [a, b], we deduce that

∂xiL(t, f(t), f ′(t))− d

dt

(
∂viL(t, f(t), f ′(t))

)
= 0 for all t ∈ [a, b].

*7.4 Geodesics as stationary points of the energy functional. We will now extend the formalism of
the previous exercise to the realm of manifolds. Let (M, g) be a smooth Riemannian manifold.
Let L : TM → R be a smooth function; for any x ∈ M and v ∈ TxM, we will denote with
L(x, v) the value of L at (x, v) ∈ TM. For any smooth curve γ : [a, b] → M, we will de�ne
the action of γ with respect to L by

SL[γ]
.
=

� b

a

L[γ(t), γ̇(t)] dt.
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(a) Let γ : [a, b] → M be a given curve and ϕ : (−δ, δ) × [a, b] → M be a smooth variation
of γ which is entirely contained in a coordinate chart (x1, . . . , xn) on M; we will denote
with ∂ϕs

∂s
|s=0 the variation �eld along γ (as we did in class). Show that (4) also holds in

this case, i.e.

d

ds
SL[ϕs]

∣∣
s=0

=
[
∂viL(γ(t), γ̇(t)) ·

∂ϕi
s

∂s
|s=0(t)

]b
t=a

+

� b

a

(
∂xiL(γ(t), γ̇(t))− d

dt

(
∂viL(γ(t), γ̇(t))

))
· ∂ϕ

i
s

∂s
|s=0(t) dt,

where, in the local coordinates (x1, . . . , xn; v1, . . . , vn) on TM associated to (x1, . . . , xn)
(recall that vi(V ) = dxi(V ) for any V ∈ Γ(M)), ∂xiL and ∂viL denote the partial deriva-
tives of L(x1, . . . , xn; v1, . . . , vn) with respect to the corresponding variables.

Moreover, if γ is a stationary point for SL for all variations ϕs with ϕs(a) = γ(a) and
ϕs(b) = γ(b), then

∂xiL(γ(t), γ̇(t))− d

dt

(
∂viL(γ(t), γ̇(t))

)
= 0, i = 1, . . . , n.

(b) Let us now examine the case when

L(x, v) = 1

2
g|x(v, v) for x ∈ M, v ∈ TxM

(this can be thought of as an extension of the Newtonian function for the kinetic energy in
the setting of Riemannian manifolds). In this case, the action SL is known as the energy
functional (which we also saw in Ex. 2.1):

E [γ] =
� b

a

g(γ̇(t), γ̇(t)) dt.

Show that if ϕs is a variation of a smooth curve γ : [a, b] → M, not necessarily contained
in a single coordinate chart, then

d

ds
E [ϕs]|s=0 =

〈∂ϕs

∂s
|s=0, γ̇

〉
g

∣∣b
t=a

−
� b

a

〈∂ϕs

∂s
|s=0,∇γ̇ γ̇

〉
g
dt.

This is known as the 1st variation formula for the energy.(Hint: Break up the variation
into smaller intervals in t such that each one is contained inside a single coordinate chart.)
Deduce that if γ is a stationary point for the energy under all variations which �x the
endpoints γ(a), γ(b), then γ is a geodesic.

Remark. In contrast to the case of stationary curves for the length functional (which are
reparametrizations of geodesics, not necessarily with constant speed), a reparametrization
of a geodesic is not a stationary point for E [γ]. Thus, E [γ] can be used to single out
�properly parametrized� geodesics via a minimization process.
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(c) For any p ∈ M, let σ : [a, b] → Ωp ⊂ TpM be a smooth curve (Ωp is the domain of
de�nition of the exponential map expp). Show that

d

ds

(
∥σ(s)∥2g|p

)
=
〈
d expp |σ(s)σ̇(s), d expp |σ(s)σ(s)

〉
g
,

where we view σ(s) both as point in Ωp and a vector in Tσ(s)Ωp (namely as the tangent
vector of the line t → σ(s)t at t = 1). Hint: What is the energy of the geodesic t →
expp(σ(s)t), t ∈ [0, 1]? Deduce from the above formula the statement of the lemma of
Gauss.

Solution. (a) The proof of this part is essentially Exercise 7.3.

(b) Let a = t0 < t1 < . . . < tk−1 < tk = b be a partition of [a, b] such that, for any l = 0, . . . , k−1,
the curve {γ(t) : t ∈ [tl, tl+1]}, lies inside the domain Ul of a coordinate chart (x1, . . . , xn) on M.
The continuity of ϕs(t) in (s, t) then implies that, by possibly choosing a smaller value of δ > 0 if
necessary, we have {ϕs(t) : t ∈ [tl, tl+1]} ⊂ Ul.

Expressed in the associated coordinate chart (x1, . . . , xn; v1, . . . , vn) on TUl ≃ Ul×Rn (where, for
any p ∈ Ul and ξ ∈ TpM, we have vi(ξ) = dxi|p(ξ)), the function L takes the form

L(x, v) = 1

2
gab(x)v

avb.

Note that ∂viL(x, v) = gibv
b and, therefore,

∂xiL(γ(t),γ̇(t))− d

dt

(
∂viL(γ(t), γ̇(t))

)
=

1

2
∂igab|γ(t)γ̇a(t)γ̇b(t)− d

dt

(
gib|γ(t)γ̇b(t)

)
=

1

2
∂igab|γ(t)γ̇a(t)γ̇b(t)−

( d
dt
(gib|γ(t))γ̇b(t) + gib|γ(t)γ̈b(t)

)
=

1

2
∂igab|γ(t)γ̇a(t)γ̇b(t)−

(
∂jgib|γ(t)γ̇j(t)γ̇b(t) + gib|γ(t)γ̈b(t)

)
= −

(
gib|γ(t)γ̈b(t) +

1

2

(
2∂jgib|γ(t)γ̇j(t)γ̇b(t)− ∂igab|γ(t)γ̇a(t)γ̇b(t)

))

= −

(
gib|γ(t)γ̈b(t) +

1

2

(
∂jgib|γ(t)γ̇j(t)γ̇b(t) + ∂bgij|γ(t)γ̇j(t)γ̇b(t)− ∂igab|γ(t)γ̇a(t)γ̇b(t)

))
.

Thus, using the fact that

gikΓ
k
jb =

1

2

(
∂jgib + ∂bgij − ∂igjb

)
,

the above calculation yields:

∂xiL(γ(t),γ̇(t))− d

dt

(
∂viL(γ(t), γ̇(t))

)
(7)
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= −

(
gik|γ(t)γ̈k(t) + gik|γ(t)Γk

jb|γ(t)γ̇j(t)γ̇b(t)

)
= −gik|γ(t)

(
∇γ̇(t)γ̇(t)

)k
.

Denoting

E (l)[ϕs] =

� tl+1

tl

L(ϕs(t), ϕ̇s(t)) dt,

we obtain after applying part (a) of this exercise and using (7):

d

ds
E (l)[ϕs]|s=0 =

[
gij|γ(t)

∂ϕi
s

∂s
(0, t)γ̇j(t)

]∣∣∣tl+1

t=tl
−
� tl+1

tl

gij|γ(t)
∂ϕi

s

∂s
(0, t)

(
∇γ̇(t)γ̇(t)

)j
dt

=
〈∂ϕs

∂s
|s=0, γ̇

〉
g

∣∣tl+1

t=tl
−
� tl+1

tl

〈∂ϕs

∂s
|s=0,∇γ̇ γ̇

〉
g
dt. (8)

Summing over l = 0, . . . , k − 1 and using the fact that E [ϕs] =
∑k−1

l=0 E (l)[ϕs] (noting also the cancel-
lations occuring in the sum for the �rst terms in the right hand side of (8)), we obtain the desired
identity:

d

ds
E [ϕs]|s=0 =

k−1∑
l=0

〈∂ϕs

∂s
|s=0, γ̇

〉
g

∣∣tl+1

t=tl
−

k−1∑
l=0

� tl+1

tl

〈∂ϕs

∂s
|s=0,∇γ̇ γ̇

〉
g
dt

=
〈∂ϕs

∂s
|s=0, γ̇

〉
g

∣∣tk
t=t0

−
� tk

t0

〈∂ϕs

∂s
|s=0,∇γ̇ γ̇

〉
g
dt

=
〈∂ϕs

∂s
|s=0, γ̇

〉
g

∣∣b
t=a

−
� b

a

〈∂ϕs

∂s
|s=0,∇γ̇ γ̇

〉
g
dt. (9)

In the case when γ is a stationary point of E [ϕs] for all variations ϕs with ϕs(a) = γ(a) and
ϕs(b) = γ(b), by choosing a variation ϕs such that

∂ϕs

∂s
(0, t) = χ(t)∇γ̇ γ̇|γ(t)

(where χ : [a, b] → [0,+∞) is chosen as in Exercise 7.1, so that χ(a) = χ(b) = 0 and χ(t) > 0 for
t ∈ (a, b)) we obtain

0 =
d

ds
E [ϕs]|s=0 = −

� b

a

χ(t)
〈
∇γ̇ γ̇,∇γ̇ γ̇

〉
g
dt

from which we infer (since ⟨∇γ̇ γ̇⟩g ⩾ 0 and∇γ̇ γ̇|γ(t) is continuous in t) that∇γ̇ γ̇ ≡ 0. The construction
of a variation ϕs as above can be done similarly as in Exercise 7.1 (by constructing {ϕs(t) : t ∈ [tl, t]}
for each successive l = 0, . . . , k− 1 in the coordinate chart Ul so that the points ϕs(tl) ∈ M coincide
with the value obtained form the construction in the previous coordinate chart Ul−1).

(c) Let us consider the family of curves ϕs : [0, 1] → M, s ∈ [a, b], de�ned by the relation

ϕs(t) = expp

(
σ(s)t

)
.
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Note that for any value of s, ϕs is a geodesic of (M, g); moreover, we have

ϕs(0) = p for all s ∈ [a, b].

Thus, for any s0 ∈ (a, b), applying the variation formula (9) for the family of curves ϕs (considering
them as variations of the geodesic ϕs0), we obtain:

d

ds
E [ϕs]|s=s0 =

〈∂ϕs

∂s
|s=s0 , ϕ̇s0

〉
g

∣∣1
t=0

−
� 1

0

〈∂ϕs

∂s
|s=s0 ,∇ϕ̇s0

ϕ̇s0

〉
g
dt.

Since ∂ϕs

∂s
|t=0 = 0 and ϕs0 is a geodesic, we deduce

d

ds
E [ϕs]|s=s0 =

〈∂ϕs

∂s
(s0, 1), ϕ̇s0(1)

〉
g

=
〈( d

ds
expp(σ(s))

)
|s=s0 ,

d

dt
expp(σ(s0)t)|t=1

〉
g
. (10)

Since ϕs(t) is a geodesic, ∥ϕ̇s(t)∥ is constant in t ∈ [0, 1]. Therefore,

E [ϕs] =

� 1

0

g(ϕ̇s(t), ϕ̇s(t)) dt =

� 1

0

∥ϕ̇s(t)∥2 dt = ∥ϕ̇s(0)∥2 =
∥∥ d

dt
(expp(σ(s)t))

∣∣
t=0

∥∥2.
Using the fact that d expp |v=0 = Id, we therefore have d

dt
(expp(σ(s)t))

∣∣
t=0

= σ(s) and, thus,

E [ϕs] = ∥σ(s)∥2gp .

Moreover, we calculate (using the general formula d
ds
(F ◦γ(s)) = dF |γ(s)γ̇(s) for any curve γ : I → N1

and any smooth map F : N1 → N2):

d

ds
expp(σ(s))

)
|s=s0 = d expp |σ(s)σ̇(s)

and
d

dt
expp(σ(s0)t)|t=1 = d expp |σ(s)σ(s0).

Substituting the above relations in (10), we �nally obtain that, for any s0:

d

ds

(
∥σ(s)∥2g|p

)∣∣∣
s=s0

=
〈
d expp |σ(s0)σ̇(s0), d expp |σ(s0)σ(s0)

〉
g
.

Let v, ξ ∈ TpM be tangent vectors so that v ⊥ ξ. Using the above formula for the curves
σ1(s) = vs and σ2(s) = cos(s)v + sin(s)ξ for s0 = 0, we obtain the statement of the lemma o Gauss,
namely 〈

d expp |vv, d expp |vv
〉
g
= ⟨v, v⟩g,

〈
d expp |vξ, d expp |vv

〉
g
= 0.
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